

High-Pressure Combustion Chamber Dynamics

Vigor Yang
The Pennsylvania State University
University Park, Pennsylvania 16802, U.S.A.

*Email: vigor@psu.edu

Presented at International Symposium on Energy Conversion Fundamentals Istanbul, Turkey, June 21-25, 2004

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate ormation Operations and Reports	or any other aspect of the property of the contract of the con	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 22 JUN 2004		2. REPORT TYPE N/A		3. DATES COVE	ERED	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
High-Pressure Combustion Chamber Dynamics			5b. GRANT NUMBER			
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUMBER		
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE State University Uni	` /	sylvania 16802,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 93, International Sy une 2005., The origi		•	ndamentals H	Ield in Istanbul,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 51	RESPONSIBLE FERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Why Supercritical Combustion Research?

Department of Mechanical & Nuclear Engineering

- most booster engines operate at supercritical conditions
- current understanding not sufficient to support design optimization

Temperature

Liquid Rocket Chamber Conditions

8 5

Department of Mechanical & Nuclear Engineering

Critical Properties of Propellants

	Propenants	MPa) Ter (K)		
	Pcr (MPa)	Ter (K)		
\mathbf{H}_2	1.3	33.3		
Oxygen	5.04	154.4		
RP-1	2.344	685.95		

F-1 Engine (Saturn V)

	Fuel Inj. Oxy Inj.		Cham.		
T (K)	294.3	89.5	3546		
P (MPa)	7.9	8.8	7.8		

Space Shuttle Main Engine

	Fuel Inj.	Oxy Inj.	Cham.
T (K)	879.0	126.0	3700
P (MPa)	24.8	33.0	22.58

Flow Diagram of RD-170 Engine

8 5 5

- Energia booster and Zenit first stage, up to 10 flights.
- LOX/kerosene, one main two boost turbopumps
- -806 ton thrust (vacuum), 337 seconds of I_{sp} , O/F ratio of 2.63
- Chamber pressure 250 bar, turbine inlet pressure 519 bar and temperature 772 K

PENNSTATE

Worldwide Efforts on Supercritical Combustion Research (1/2)

- Tamura et al. / NAL (Japan)
- Mayer, Oschwald, Haidn, etc. / DLR (Germany)
- Habiballah, Vingert, Grisch, etc. / ONERA (France)
 Candel et al. / Ecole Central Paris (France)
- Woodward, Pal, Santoro, etc. / Penn State (USA)
 Talley, Chehroudi, etc. / AFRL (USA)
 Blevins, Morris, etc. / NASA Marshall (USA)

- Oefelein / DoE Sandia Lab. (USA)
- Bellan / NASA JPL (USA)
- Farmer / U. of Nevada (USA)
- Habiballah, et al. / ONERA (France)
- Yang / Penn State (USA)

Shadowgraph Results – LN2 into GN2

Chehroudi et. al., AIAA 99-0206, AIAA 99-2489

Department of Mechanical & Nuclear Engineering

 $p_{cr} = 3.39 \text{ MPa}, \ T_{cr} = 126 \text{ K}, \ T_{\infty} = 300 \text{ K}, \ T_{in} = 99 \sim 120 \text{ K}$ $u_{in} = 10 \sim 15 \text{ m/s}, \ D_{in} = 0.254 \text{ mm}, \ \text{Re} = 25,000 \sim 75,000$

Characteristics of Supercritical Fluid Jet

Department of Mechanical & Nuclear Engineering

Mayer et al. $AIAA \ 1996-2620$ $T_{LN2} = 105 \text{ K}$ $T_{GN2} = 300 \text{ K}$ $u_{LN2} = 10 \text{ m/s}$ $D_{in} = 1.9 \text{ mm}$

- Thermodynamic non-idealities and transport anomalies in transcritical regime
 - rapid property variations large density gradient
- Diminishment of surface tension and enthalpy of vaporization
- Pressure-dependent solubility
- High Reynolds number

- Pressure increases from 1 to 10^2 atm, Re_t increases by 10^2
- Kolmogorov microscale $\eta_t/l_t \sim Re_t^{-3/4}$ (decrease by 1.5 order)
- Taylor microscale $\lambda_t/l_t \sim Re_t^{-1/2}$ (decrease by 1.0 order)

LES Formulation of Supercritical Fluid Dynamics

8 5 5 Department of Mechanical & Nuclear Engineering

• Favre-filtered conservation equations

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial (\overline{\rho} \widetilde{u})}{\partial x_{j}} = 0$$

$$\frac{\partial (\overline{\rho} \widetilde{u}_{j})}{\partial t} + \frac{\partial (\overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} + \overline{p} \delta_{ij} - \overline{\tau}_{ij})}{\partial x_{j}} = -\frac{\partial (R_{ij} + L_{ij} + C_{ij})}{\partial x_{j}}$$

$$\frac{\partial (\overline{\rho} \widetilde{E} + q)}{\partial t} + \frac{\partial [(\overline{\rho} \widetilde{E} + \overline{P}) \widetilde{u}_{j} - \overline{u_{i} \tau_{ij}}]}{\partial x_{j}} = -\frac{\partial (K_{j} + Q_{j} + q_{j})}{\partial x_{j}}$$

 Closure requirements

- Thermodynamic and transport properties $Z, C_p, \mu, \lambda, D_{im}$
- Subgrid-scale turbulence interaction R, L, C
- Chemical kinetics

Equations of State

Department of Mechanical & Nuclear Engineering

Soave-Redlich-Kwong (SRK)

$$p = \frac{RT}{v - b} - \frac{a}{v(v + b)}$$

• Peng-Rubinson (PR)

$$p = \frac{RT}{v-b} - \frac{a}{v(v+b) + b(v-b)}$$

• Benedict-Webb-Rubin (BWR)

$$p = \sum_{n=1}^{9} a_n \rho^n + \sum_{n=10}^{15} a_n \rho^{2n-17} e^{-\gamma \rho^2}$$

Evaluation of Thermodynamic Properties

Department of Mechanical & Nuclear Engineering

• Sensible enthalpy: $h(\rho,T) = h^0(T) + \Delta h_{occ}(\rho,T)$

• Internal energy: $u(\rho, T) = u^{0}(T) + \Delta u_{exc}(\rho, T)$

• Specific heat $C_p(\rho,T) = C_p^{0}(T) + \Delta C_{p,exc}(\rho,T)$

 Δh_{exc} , Δu_{exc} , $\Delta C_{p,exc}$ = dense fluid corrections

 $h^0(T), u^0(T), C_p^0(T), =$ values in dilute-gas limit

Pressure-explicit type of EOS:

$$\Delta h_{exc} = \int_0^{\rho} \left[\frac{p}{\rho^2} - \frac{T}{\rho^2} \left(\frac{\partial p}{\partial T} \right)_{\rho} \right] d\rho + RT(Z - 1)$$

$$\Delta u_{exc} = \int_0^{\rho} \left[\frac{p}{\rho^2} - \frac{T}{\rho^2} \left(\frac{\partial p}{\partial T} \right)_{\rho} \right] d\rho$$

$$\Delta C_{p,exc} = -T \int_0^{\rho} \left[\frac{1}{\rho^2} \left(\frac{\partial^2 p}{\partial T^2} \right) d\rho + \frac{T (\partial p / \partial T)_{\rho}^2}{\rho^2 (\partial p / \partial \rho)_T} \right] - R$$

Thermophysical Properties of Nitrogen

Droplet Vaporization and Combustion in Quiescent and Convective Environments

8 5 5 Department of Mechanical & Nuclear Engineering

• Liquid oxygen (LOX) droplet vaporization & combustion in hydrogen and water $5 < p_m < 300 \text{ atm}$

$$500 < T_{m} < 2500 \text{ K}$$

$$50 < D_0 < 300 \mu m$$

Hydrocarbon droplet vaporization & combustion in air and oxygen

$$5 < p_{\infty} < 200 \text{ atm}$$

$$300 < T_{\infty} < 2500 \text{ K}$$

$$100 < D_0 < 1000 \mu m$$

• Unsymmetrical dimethylhydrazine (UDMH) droplet vaporization and decomposition combustion

$$1 < p_{\infty} < 180 \text{ atm}$$

Flow and Temperature Fields

8 5

Department of Mechanical & Nuclear Engineering

 $P_{\infty}=100 \text{ atm}, T_{\infty}=1000 \text{ K}, u_{\infty}=20 \text{ m/s}, T_{0}=100 \text{ K}, d_{0}=50 \text{ }\mu\text{m}, H/R=8$

Department of Mechanical & Nuclear Engineering

· effect of ambient pressure on

- thermophysical properties
- critical mixing state
- convective heat transfer

· effect of ambient velocity on

convective heat transfer

atmospherical condition

Ranz and Marshall's correlation

$$\frac{\tau_f}{\tau_{f, \text{Re}=0}} \propto \frac{h_{\text{Re}=0}}{h} = \frac{1}{1 + 0.3 \,\text{Re}^{1/2} \,\text{Pr}^{1/3}}$$

supercritical condition

LOX/hydrogen system

$$\frac{\tau_f}{\tau_{f, \text{Re}=0}} \propto \frac{h_{\text{Re}=0}}{h} = \frac{1}{1 + 0.15634 \,\text{Re}^{1.1} \,\text{Pr}_{O_2}^{-0.88}}$$

Supercritical Fluid Injection

The state of the s

5

$$p_{\infty} = 3.4 - 10.0 \text{ MPa}, T_{\infty} = 300 \text{ K},$$
 $T_{\text{iih}} = 120 \text{ K}, D_{\text{iih}} = 0.254 \text{ mm},$
 $v_{\text{iih}} = 15 \text{ m/s}, Re = 200000 - 400000$

Shadowgraph Images of Cryogenic Nitrogen Injection *Mayer et al. AIAA 2001-3275*

$$(p_{\infty} = 6.0 \text{ MPa}, T_{\infty} = 300 \text{ K}, u_{in} = 4.9 \text{ m/s}, T_{in} = 132 \text{ K}, D_{in} = 2.2 \text{ mm})$$

Computational Domain and Grids

8 5

Department of Mechanical & Nuclear Engineering

- Kolmogorov microscale $\eta_t/l_t \sim Re_t^{-3/4}$
- Taylor microscale $\lambda_t/l_t \sim Re_t^{-1/2}$
- $3.4 \le p_{ch} \le 10.0 \ MPa$ and $D_{in} = 0.254 \ mm$
- $3 < \lambda_t < 5 \mu m$

total grids

 $225 \times 75 \times 72 = 1,215,000$ mean grid spacing in

near injector region

 $\Delta = 5 \, \mu m$

PENNSTATE

Density Gradient Field

8 5 5

$$(p_{\infty} = 9.3 \text{ MPa}, T_{\infty} = 300 \text{ K}, u_{\text{in}} = 15 \text{ m/s}, T_{\text{in}} = 120 \text{ K}, D_{\text{in}} = 254 \text{ }\mu\text{m})$$

Time Evolution of Density Gradient Field

1 8 5 5

$$(p_{\infty} = 6.9 \text{ MPa}, T_{\infty} = 300 \text{ K}, u_{in} = 15 \text{ m/s}, T_{in} = 120 \text{ K}, D_{in} = 254 \text{ }\mu\text{m})$$

PENNSTATE

Snapshots of Density and Temperature Gradient Fields

$$(p_{\infty} = 9.3 \text{MPa}, T_{\infty} = 300 \text{K}, u_{\text{in}} = 15 \text{m/s}, T_{\text{in}} = 120 \text{K}, t = 1.550 \text{ms}, D_{\text{in}} = 254 \mu\text{m})$$

PENNSTATE Most Energy Containing POD Modes of Axial Velocity

$$(p_{\infty} = 9.3 \text{ MPa}, T_{\infty} = 300 \text{ K}, u_{in} = 15 \text{ m/s}, T_{in} = 120 \text{ K}, D_{in} = 254 \text{ }\mu\text{m})$$

Iso-Surfaces of Pressure and Density Gradients

1 8 5 5

$$(p_{\infty} = 9.3 \text{ MPa}, T_{\infty} = 300 \text{ K}, u_{in} = 15 \text{ m/s}, T_{in} = 120 \text{ K}, D_{in} = 254 \text{ }\mu\text{m})$$

PENNSTATE

Effect of Pressure on Density and Temperature Fields

$$T_{\infty} = 300K$$
, $u_{in} = 15m/s$, $T_{in} = 120K$, $D_{in} = 254\mu m$)

Power Spectral Densities of Velocity Fluctuations

8 5 5

Department of Mechanical & Nuclear Engineering

$$(p_{\infty} = 9.3 \text{MPa}, T_{\infty} = 300 \text{K}, u_{\text{in}} = 15 \text{m/s}, T_{\text{in}} = 120 \text{K}, D_{\text{in}} = 254 \mu\text{m})$$

Large density-gradient regions act like a solid wall that amplifies the axial turbulent fluctuation but damps the radial one.

Vortex Shedding Frequency

PENNSTA

Department of Mechanical & Nuclear Engineering

$$(p_{\infty} = 9.3 \text{MPa}, T_{\infty} = 300 \text{K}, u_{\text{in}} = 15 \text{m/s}, T_{\text{in}} = 120 \text{K}, D_{\text{in}} = 254 \mu\text{m})$$

Jet flow instability analysis

$$St_j = f_j \theta_0 / \overline{U}$$

where $0.044 \le St_i \le 0.048$

$$\overline{U} = 15 \ m/s$$

Momentum thickness

$$\theta_0 = 0.02 \ mm$$

$$\theta_0 = \int_0^\infty \frac{u}{U_{\text{max}}} (1 - \frac{u}{U_{\text{max}}}) dy$$

choose

$$St_i = 0.046$$

then

$$f_1 = 34500$$

$$f_2 = 17250$$

Linear Stability Analysis of Real Fluid Jet

8 5 5

Department of Mechanical & Nuclear Engineering

Conclusions

- As the density ratio increases, the spatial growth rate of the interfacial instability wave decreases.
 Density stratification tends to stabilize the mixing layer.
- Density stratification has little effect on the frequency of the most unstable mode.

Approach

- Two-dimensional fluid jet instability at supercritical conditions.
- Unified treatment of real-fluid thermodynamics and transport phenomena.
- Disperse equation solved by Newton-Ralpson method.

Bi-Propellant Swirl Co-Axial Injector

* FIE

8 5

	Component	Geometrical characteristic	Spray-cone angle angle	Pressure drop	flow rate
6 hole Q1.7 B-B 12 0.0 15 6 hole Q0.7 L 10.5 25.0 AAA 6 hole Q0.7	oxidizer	2	80	8,426	172,9
	fuel	24,5	135	0,696	64,8
3 hole Ø1.2 fuel 130 \$\frac{1}{6} \tilde{6} \	oxidizer	_	_	0,426	172,3
	fuel	_	_	0,696	64, 8

Large Eddy Simulation of Swirling Oxygen Jet

8 5 5

Department of Mechanical & Nuclear Engineering

Issues

- Swirling jet dynamics at supercritical conditions
- Flame stabilization mechanisms of swirl co-axial injector.
- Liquid rocket thrust chamber dynamics.

Major Results

- Liquid film thickness and swirl cone angle.
- Detailed flow structures, including central recirculation zone, surface instability, etc.
- Response of injector dynamics to external forcing.

LOX/Kerosene Preburner Swirl Injector

(Wu, et al., unpublished data, 2003)

Department of Mechanical & Nuclear Engineering

Secondary injection Secondary injection

oxidizer-rich preburner injector

damaged inner centrifugal injector

Time Evolution of Swirling Jet

8 5 5

Department of Mechanical & Nuclear Engineering

$$(p_{\infty}=10.0 \text{ MPa}, T_{\infty}=300 \text{ K}, u_{\text{inj}}=30 \text{ m/s}, T_{\text{inj}}=120 \text{ K}, \theta=30^{\circ}, \text{nitrogen})$$

Temperature (K)

120 140 160 180 200 220 240 260 280 300

Time Evolution of Swirling Jet

Department of Mechanical & Nuclear Engineering

 $(p_{\infty}=10.0 \text{ MPa}, T_{\infty}=300 \text{ K}, u_{inj}=30 \text{ m/s}, T_{inj}=120 \text{ K}, \theta=30^{\circ}, \text{nitrogen})$

Temperature (K)

Disintegration of Swirling Water Jet

(Inamura, Tamura and Sakamoto, JPP, 2003)

Department of Mechanical & Nuclear Engineering

Water Injection, L/D=11.67, K=1.0

 $(1) M_1 = 26.1 g/s$

 $(2) M_1 = 32.5 g/s$

 $(3) M_1 = 48.6 g/s$

- A hollow cone sheet forms around the injector exit.
- The conical sheet fluctuates vigorously and disintegrates into ligaments and droplets at the sheet tip.
- The sheet breakup point approaches the injector as the liquid flow rate increases.

Theoretical Analysis of Swirl Injector (1/2)

$$x < x_0$$

$$\frac{d}{dx} \int_0^{\delta} (U_i u - u^2) dy = \frac{\tau_w}{\rho_l} \quad \text{where} \quad \tau_w = \rho_l v_l (\frac{\partial u}{\partial y})_{y=0} \quad \text{and} \quad \underline{\delta^* = 5.84 \sqrt{x^* / \text{Re}}}$$

$$\tau_{w} = \rho_{l} v_{l} \left(\frac{\partial u}{\partial y} \right)_{y=0}$$

$$\delta^* = 5.84 \sqrt{x^* / \text{Re}}$$

$$Q = U_i h_i = \int_0^\delta u dy + U_i (h - \delta)$$

$$h^* = 1 + (3/10)\delta^*$$

Theoretical Analysis of Swirl Injector (2/2)

8 5

Department of Mechanical & Nuclear Engineering

$x_0 < x < x_t$

$$h^* = 1.429 / \{1 + A(x^* - x_0^*)\}$$
 $A = 1.682(v_l / Q)$

$x_t < x$

$$h^* = 0.02798(x^* / \text{Re}^{1/4}) + C_1 | x_0^* = 0.0598 \text{Re} |$$

$$C_1 = 1.429\{1 + A(x_t^* - x_0^*)\} - 0.0279(x_t^* / \text{Re}^{1/4})$$

$x_t < x < x_0$

$$h^* = 0.02798(x^* / \text{Re}^{1/4}) + C_3$$

$$C_3 = 1.143 - 0.02798(x_0^* / \text{Re}^{1/4})$$

$$x_0^* = \{(1.182 - C_2) / 0.2893\} \text{Re}^{1/4}$$

Film Thickness at Post Exit

Limiting Extremes: 2) Diffusion Processes Dominate

Department of Mechanical & Nuclear Engineering

• "High" Heating Rates

Burning LOX Jet at Supercritical Pressure (Mayer, DLR, Germany; Tamura, NAL, Japan)

8 5

$$(u_{LOX} = 30 \text{ m/s}, u_{H_2} = 300 \text{ m/s}, T_{LOX} = 100 \text{ K}, T_{H_2} = 300 \text{ K}, p = 6 \text{ MPa})$$

Supercritical Injector Flow and Flame Dynamics

Department of Mechanical & Nuclear Engineering

Combined OH emission and backlighting images (Ph.D thesis of Matthew Juniper)

Modeling and Simulation of Supercritical Combustion

Thank You!

PENNSTATE

Effect of Pressure on Mean Temperature Distributions

$$(T_{\infty} = 300 \text{ K}, u_{in} = 15 \text{ m/s}, T_{in} = 120 \text{ K}, D_{in} = 254 \text{ }\mu\text{m})$$

$$(T_{\infty} = 300 \text{ K}, u_{in} = 15 \text{ m/s}, T_{in} = 120 \text{ K}, D_{in} = 254 \text{ }\mu\text{m})$$

Frequency Spectral of Radial Velocity Oscillations

8 5

Department of Mechanical & Nuclear Engineering

p = 4.2 MPa

p = 6.9 MPa

p = 9.3 MPa

Normalized Density and Temperature Distributions along Radial Direction

8 5 5

$$T_{\infty} = 300K$$
, $u_{in} = 15m/s$, $T_{in} = 120K$, $D_{in} = 254\mu m$)

- Thermal diffusivity of nitrogen is relatively lower in the region where the temperature is near the critical temperature.
- Most thermal energy transferred from the hot ambient gaseous nitrogen to the cold jet is used to facilitate volume expansion.

Numerical Challenges

8 5 5

5 Department of Mechanical & Nuclear Engineering

Challenges

- machine round-off errors at low speeds
- eigenvalue disparity
- time accuracy
- real-fluid behavior
- robust and efficient numerical treatment

Solutions

- pressure decomposition
- preconditioning method
- dual time-stepping integration technique
- partial mass/molar properties
- derivation of numerical Jacobians and thermodynamic properties based on fundamental thermodynamic theories

Normalized Density and Temperature Distributions

8 5 5

$$(p_{\infty} = 9.3 \text{MPa}, T_{\infty} = 300 \text{K}, u_{\text{in}} = 15 \text{m/s}, T_{\text{in}} = 120 \text{K}, D_{\text{in}} = 254 \mu\text{m})$$

- Due to the "near critical slow down", the temperature of nitrogen fluid increases slowly along the jet centerline.
- A self-similar density profile exist when x/d > 15.

PENNSTATE

